

Statistical Methods for Learning Curves and Cost Analysis

Matthew Goldberg, CNA Corporation Anduin Touw, Boeing Corporation January 2003

Cost Analysis Statistical Monograph

- Written
 - Written over the past four years with Anduin Touw (Boeing Corporation)
 - Inspired by David Lee's "The Cost Analyst's Companion"
 - Greater emphasis on <u>statistical methods</u> for learning curves and CERs
 - To be published by INFORMS, Topics in Operations Research series, 2003

Questions I Have Been Asked As A Book Author

- How many pages is your book?
 180 pages
- OK, then, what's it about?
 Statistical Methods for Learning Curves and Cost Analysis
- Really, may I have a (free) copy?
 No, but it will be priced very reasonably (well under \$50/copy, in paperback)
- Daddy, are you really smart enough to write a book?
 No, David, I'm not

Statistical Problems in Military Cost Analysis

- Marginal cost of a weapon system varies with:
 - technical and performance characteristics
 - e.g., weight, speed, materials content
 - unit number in the production sequence
 - "learning"
- Learning curve: relationship between cost and sequence number, holding fixed the technical and performance characteristics
- Cost estimating relationship (CER): relationship between cost and characteristics, holding fixed the sequence number (e.g., 100th unit)

Learning Curve versus CER: Two Perspectives

Data on Sequential Production Lots

- We do not typically observe data on individual production units
- Instead, we observe data on "lots"
 - typically annual lots, though a given lot may span several fiscal years start-to-finish

Lot number	Lot start	Lot end	Lot size	Incremental lot cost (\$M)	Lot average cost (\$M)
1	1	218	218	102.765	0.471
2	219	1,158	940	212.158	0.226
3	1,159	3,200	2,042	321.819	0.158
4	3,201	5,900	2,700	333.720	0.124
5	5,901	7,591	1,691	212.558	0.126
6	7,592	10,011	2,420	227.238	0.094
7	10,012	11,668	1,657	157.912	0.095
8	11,669	14,436	2,768	171.339	0.062

Learning Curve Estimation: Lot Midpoint Iteration

Power-function model for marginal cost:

$$MC(Q) = T_1 \times Q^b, \quad -1 < b \le 0$$

Incremental lot cost:

$$TC_{i} - TC_{i-1} = \int_{Q_{i-1}+0.5}^{Q_{i}+0.5} T_{1} z^{b} dz = \frac{T_{1}}{1+b} \times \left[(Q_{i}+0.5)^{1+b} - (Q_{i-1}+0.5)^{1+b} \right]$$

Lot average cost:

$$LAC_{i} = \frac{TC_{i} - TC_{i-1}}{Q_{i} - Q_{i-1}} = \frac{T_{1}}{(1+b)\times(Q_{i} - Q_{i-1})} \times \left[(Q_{i} + 0.5)^{1+b} - (Q_{i-1} + 0.5)^{1+b} \right]$$

Lot Midpoint Calculation

 Find the point interior to each lot whose marginal cost equals the lot average cost

$$AC_{i} = MC[\overline{Q}_{i}(b)] = T_{1} \times [\overline{Q}_{i}(b)]^{b} \longrightarrow \overline{Q}_{i}(b) = \left(\frac{[(Q_{i} + 0.5)^{1+b} - (Q_{i-1} + 0.5)^{1+b}]}{(1+b) \times (Q_{i} - Q_{i-1})}\right)^{1}$$

Lot Midpoint Iteration

By the definition of the lot midpoint:

$$LAC_i = MC[\overline{Q}_i(b)] = T_1 \times [\overline{Q}_i(b)]^b, \quad i = 1,K,n$$

Take natural logarithms:

$$\ln(LAC_i) = \ln(T_1) + b \ln[\overline{Q}_i(b)], \quad i = 1, K, n$$

- Alternate between these two steps, until (hopefully) convergence
- Calculate the midpoint of each lot i
- Run a linear regression on the midpoints, for lots i = 1, K, n

Assessment of Lot Midpoint Iteration

- - Lot-midpoint iteration has no theoretical foundation
 - There may not be a "root"
 - Root may not be unique
 - Iteration may not converge to any root
 - Does not optimize any continuous function
 - Maximize likelihood function
 - Minimize sum-of-squares

Convergence example

Better to use non-linear least squares (NLS)

NLS predictions, using lot midpoints as plot points

Models with Multiplicative Error Structures

The learning curve:

$$LAC_i = T_1 \times \overline{Q}_i^b \times (1 + u_i)$$

or the CER:

Unit
$$cost_i = b_0 \times Weight_i^{b_1} \times (1 + u_i)$$
,
where $Var(u_i) = \mathbf{s}^2$ for all $i = 1, K, n$

Minimum Percentage Error (MPE) Estimation

$$\hat{\boldsymbol{b}} = \arg\min_{\boldsymbol{b}} \sum_{i=1}^{n} \left(\frac{y_i - f(x_i, \boldsymbol{b})}{f(x_i, \boldsymbol{b})} \right)^2$$

- Estimates are biased, even in very large samples
- Estimates are sensitive to outliers
- Better to use iteratively reweighted least squares (IRLS)

Why MPE is Biased: Two Perspectives

$$-\sum_{i=1}^{n} \left(\frac{y_i - f(x_i, \boldsymbol{b})}{f(x_i, \boldsymbol{b})} \right)^2 + \text{ additional term involving } \boldsymbol{b}$$

- by dropping the additional term, you shift the location of the maximum away from unbiased MLE
- The minimization algorithm is "tempted" to minimize the sum of percentage errors by inflating the denominator
 - model predictions are biased high, particularly model intercept

Monte Carlo Results with normally-distributed errors

Normal errors, $T_1 = 1.8$, b = -0.33 (80% slope), $\sigma = 0.15$

Sensitivity of Estimators to Outliers (*t*-distribution)

• t-distribution with 3 degrees-of-freedom, normalized to have $\sigma = 0.15$

• greater probability in the tails $(|u| > 2.80 \times s)$?

Monte Carlo Results with t-distributed errors

t-distributed errors, $T_1 = 1.8$, b = -0.33 (80% slope), $\sigma = 0.15$

Theoretical Comparison of Estimation Methods

Estimation Method	Distributional Assumptions	Asymptotic Properties	Software Availability	Covariance Matrix
Lot midpoint non-linear least squares (NLS)	multiplicative model, log- normal errors	consistent and asymptotically normal	any statistical package; or manually in Excel Solver (but no covariance matrix)	automatic in any statistical package; feasible in Excel
Lot-midpoint iteration	multiplicative model, log- normal errors	unknown	manually in Excel; programmable in SAS	conventional formula, an underestimate
Minimum percentage error (MPE)	multiplicative model, finite variance	biased and inconsistent	Excel Solver; programmable in SAS	unknown
Iteratively reweighted least squares (IRLS)	multiplicative model, finite variance	consistent and asymptotically normal	some statistical packages (e.g., SAS); manually in Excel Solver	automatic for supporting statistical packages; feasible in Excel

Backup slides

Convergence

- Consider the sequence b, b^2, b^3, K
- This sequence converges if $|b| \le 1$
 - e.g., $1/2,(1/2)^2,(1/2)^3,K \rightarrow 0$
 - or $-1/2, (-1/2)^2, (-1/2)^3, K = -1/2, 1/4, -1/8, K \rightarrow 0$
- It diverges if |b| > 1
 - e.g., $2, 2^2, 2^3, K$ → ∞
- Non-linear, multi-variate generalization: iteration converges if all eigenvalues of Jacobian matrix
 1 in absolute value